WS Semester 2 Final Review

1) Find the mean, median and mode of each data set:

a) 3, 5, 1, 5, 1, 1, 2, 3, 15

mean: 4 median: 3 mode: 1

b) 14, 15, 3, 15, 14, 14, 18, 15, 8, 15

mean: 13.1 median: 14,5 mode: 15

2) Make a box plot using the data below.

3, 5, 1, 5, 1, 1, 2, 3, 15

a) Identify minimum, quartile 1, median, quartile 3 and maximum.

max= 15 W(N) = 1Q(=1 med = 3 03=5

b) What is the interquartile range?

c) What is the range?

3) A student scored 75, 88, and 95 respectively on their first 3 unit exams. What do they have to score on their 4th exam to have an average of 87?

75+88+95+X=87

Simplify each.

4)
$$(5x^3 - 1 - 2x^2) + (8 + 8x^3 - x^4)$$

 $- x^4 + (3x^3 - 2x^2 + 7)$

6)
$$(5x - 7x^4 - 8) - (1 - 8x^4 - 4x)$$

 $-1 + 8x^4 + 4x$
 $-1 + 8x^4 + 4x$

Find each product.

8)
$$(5n-3)(n+3)$$

 $5n(n+3) - 3(n+3)$
 $5n^2 + 15n - 3n - 9$
 $5n^2 + 12n - 9$
10) $(3n-1)(3n^2 + 2n + 5)$

$$3n(3n^2+2n+5)-1(3n^2+2n+5)$$

 $9n^3+6n^2+15n-3n^2-2n-5$
 $79n^3+3n^2+13n-5$

Factor each completely.

$$12(2a^{3} + 7a^{2}) + (10a + 35)$$

$$a^{2}(2a + 7) + 5(2a + 7)$$

$$(a^{2} + 5)(2a + 7)$$

14)
$$2x^2 + 6x - 56$$

$$\frac{-28}{1|28} 2(x^2+3x-28)$$

$$\frac{2|4}{4|7} (2(x-4)(x+7))$$

5)
$$(3x^3 + 7x^2 + 2x^4) + (8x^4 - 7x^2 - 4x^3)$$

7)
$$(7x^4 + 5 + 5x^3) - (6x^4 - 7 - 5x^3)$$

 $-6x^4 + 5 + 5x^3$
 $-6x^4 + 7 + 5x^3$
 $-6x^4 + 7 + 5x^3$

9)
$$(6x + 8)(2x + 4)$$

 $(2x + 4) + 8(2x + 4)$
 $(2x^2 + 24x + 16x + 32)$
 $(2x^2 + 40x + 32)$

11)
$$(7x+3)(8x^2+4x-6)$$

 $7x(8x^2+4x-6)+3(8x^2+4x-6)$
 $5(6x^3+28x^2-42x+24x^2+12x-18)$
 $75(6x^3+52x^2-36x-18)$

$$13)(12k^{3} + 2k^{2})(42k - 7)$$

$$2k^{2}(6k + 1) - 7(4k + 1)$$

$$(2k^{2} - 7)(6k + 1)$$

Solve each quadratic by using your method of choice (factoring, completing the square or quadratic formula).

16)
$$x^{3} - 9x^{2} + 20x = 0$$

 $X(X^{2} - 9X + 20) = 0$
 $X(X-4)(X-5) = 0$
 $X = 0 X - 4 = 0 X - 5 = 0$
 $X = 0, 4, 5$

18)
$$x^{2} - 4x = 0$$

 $X = -(-4) \pm \sqrt{(-4)^{2} - 4(1)(8)}$
 $= 4 \pm \sqrt{48}$ $= 4 \pm \sqrt{92}$ $= 4 \pm \sqrt{92}$ $= 4 \pm \sqrt{92}$ $= 5.46 - 1.46$

- 20) The length of a rectangle is $3x^2 2x + 4$ and the width is $4x^2 5$.
 - a) Find the area of the rectangle.

$$(4x^{2}-5)(3x^{2}-2x+4)$$

 $4x^{2}(3x^{2}-2x+4)-5(3x^{2}-2x+4)$
 $12x^{4}-8x^{3}+16x^{2}-15x^{2}+10x-20$
 $(12x^{4}-8x^{3}+x^{2}+10x-20)$

b) Find the perimeter of the rectangle

$$4x^{2}-5$$

$$3x^{2}-2x+4$$

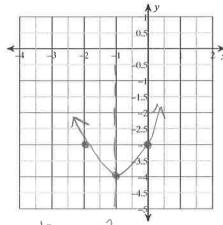
$$3x^{2}-2x+4$$

$$14x^{2}-4x-2$$

17)
$$x^{2} - 4x - 39 = 0$$

 $+ 39 + 39$
 $x^{2} - 4x + 4 = 39 + 4$
 $\sqrt{(x-2)^{2}} = \sqrt{43}$
 $x - 2 = \frac{1}{4} = 0.56$
 $x - 3 = 0$
 $x -$

21) The area of a rectangle is $6x^3 - 8x^2 + 12x$. If the width is 2x, what is the length?


$$6x^{3}-8x^{2}+12x$$

$$2x(3x^{2}-4x+4)$$

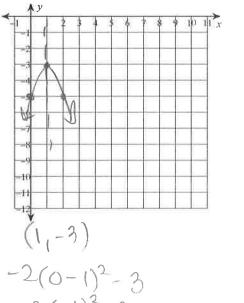
$$1 = 3x^{2}-4x+4$$

Sketch the graph of each function.

$$22) \ \ y = x^2 + 2x - 3$$

$$X = \frac{-b}{2a} = \frac{-2}{2(1)} = -1$$

$$(-1)^{2} + 2(-1) - 3$$


$$(-1) - 4$$

$$(-1) - 4$$

- 24) Using the graph from question #33,22 answer the following:
 - a) What is the vertex? (-1,-4)
 - b) What is the axis of symmetry? χ
 - c) What is the y-intercept (as an ordered pair)? (5 + 3)
 - d) What is the domain? $\mathbb{D}^{!}$ \mathbb{Z} \mathbb{R}
 - e) What is the range? R: 34 = -43
 - f) Does it have a maximum or a minimum? My What is the value?
 - g) What are the zeros of the function?

$$(x+3)(x-1)$$

 $x+3=0$ $x-1=0$
 $x=-3$ $x=1$

23)
$$f(x) = -2(x-1)^2 - 3$$

$$-2(0-1)^{2}-3$$

$$-2(-1)^{2}-3$$

$$-2(1)-3$$

$$-2-3 \quad y-int \quad (0,-5)$$

- - a) What is the vertex? (-3)
 - b) What is the axis of symmetry? $\chi = 1$
 - c) What is the y-intercept (as an ordered pair)? (0,-5)
 - d) What is the domain? $\triangle : \underbrace{\sum \underbrace{X \in \mathbb{R}^3}_{X}}$
 - e) What is the range? R' = 3
 - f) Does it have a maximum or a minimum? Max What is the value?
 - g) What are the zeros of the function?

Describe the transformation of each quadratic function.

26)
$$y = -(x - 3)^2 - 4$$

Open down

nght 3

down 4

27)
$$y = \frac{1}{2}(x-4)^2 + 2$$

OPEN UP

COMPRESS

right 4

up 2

Write a quadratic function in vertex form to represent the transformation.

28) opens up, left 8 and down 17, stretched by a factor of 4

29) up 9, right 12, opens down, compressed by

$$\frac{3}{7} = -\frac{3}{7} \left(x - 12 \right)^2 + 9$$

30) The function $h(x) = -16x^2 + 32x + 2$ represents the height in feet of a softball after x seconds. Find the maximum height of the softball.

$$X = -\frac{6}{2a} = \frac{-32}{2(-16)} = -\frac{32}{32} = 1$$

$$-16(1)^{2} + 32(1) + 2$$

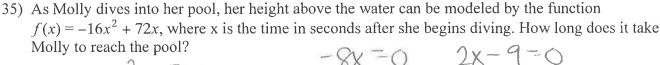
$$-16 + 32 + 2 = 18 + 4$$

Solve each equation by completing the square.

31)
$$n^2 - 8n + 11 = 4$$

$$-(1 - (1))$$

$$n^2 - 8n + 10 = -7 + 10$$


$$(n - 4)^2 = 9$$

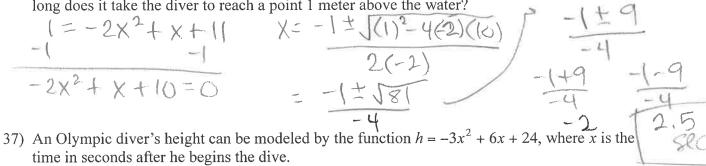
$$n - 4 = \pm 3$$

$$4 + 3$$

31)
$$n^{2} - 8n + 11 = 4$$
 $-(1) - (1)$
 $n^{2} - 8n + 10 = -7 + 10$
 $5v^{2} - 10v - 50 = -10$
 $5v^{2} - 10v + 50 = -10$
 $5v^{2} - 10v + 50 = -10$
 $5v^{2} - 10v + 10 = -10$
 $5v^{2} - 10v + 10$
 $5v^{2} - 10v + 10$
 $5v^{2} - 10v + 10$
 $5v^{2} - 10v + 10$

33)
$$3b^{2} - 27 = 0$$
 $X = -b + \sqrt{b^{2} - 4ac}$ 34) $2x^{2} - 3x - 133 = 2 + \sqrt{4 - 2}$
 $X = -\frac{0}{2} + \sqrt{3} + \sqrt{$

Folly to reach the pool?
$$-(6x^{2} + 72x = 0) = -8x = 0$$


$$-8x(2x - 9) = 0$$

$$-8x(2x - 9) = 0$$

$$-8x = 0$$

$$-$$

36) A diver begins on a platform 11 meters above the surface of the water. The diver's height is given by the equation $h(t) = -2t^2 + t + 11$, where t is the time in seconds after the diver jumps. How long does it take the diver to reach a point 1 meter above the water?

- - a) How long does it take the diver to hit the water?

$$-3x^{2} + 6x + 24 = 0$$

$$-3(x^{2} - 2x - 8) = 0$$

$$-3(x + 4)(x - 2) = 0$$

$$x + 4 = 0 \quad x - 2 = 0$$

$$x = -4 \quad x = 2$$
b) What is the initial height of the swimmer?

c) What is the maximum height of the swimmer?

$$X = \frac{-6}{2(-3)} = \frac{-6}{-6} = 1$$

$$-3(1)^{2} + 6(1) + 24$$

$$-3 + 6 + 24$$

$$27 + 4$$

d) How long does it take for the swimmer to reach its maximum height?